
CS1351 –ARTIFICIAL INTELLIGENCE
 VI SEMESTER CSE

AUTHORS

N.Vivekananthamoorthy

S.Sankar

Department of CSE

KCG College of Technology,Chennai-97

UNIT-II

(2) SEARCHING TECHNIQUES

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

2.1.2 Heuristic Functions

2.1.3 Local Search Algorithms and Optimization Problems

2.1.4 Local Search in Continuous Spaces
2.1.5 Online Search Agents and Unknown Environments

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)

2.2.1 Constraint Satisfaction Problems

2.2.2 Backtracking Search for CSPs
2.2.3 The Structure of Problems

2.3 ADVERSARIAL SEARCH

2.3.1 Games

2.3.2 Optimal Decisions in Games

2.3.3 Alpha-Beta Pruning

2.3.4 Imperfect ,Real-time Decisions

2.3.5 Games that include Element of Chance

2.1 INFORMED SEARCH AND EXPLORATION

2.1.1 Informed(Heuristic) Search Strategies

 Informed search strategy is one that uses problem-specific knowledge beyond the definition of the problem itself. It can find solutions more efficiently than uninformed strategy.
Best-first search

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is selected for expansion based on an evaluation function f(n). The node with lowest evaluation is selected for expansion,because the evaluation measures the distance to the goal.
This can be implemented using a priority-queue,a data structure that will maintain the fringe in ascending order of f-values.
2.1.2. Heuristic functions
 A heuristic function or simply a heuristic is a function that ranks alternatives in various search algorithms at each branching step basing on an available information in order to make a decision which branch is to be followed during a search.

 The key component of Best-first search algorithm is a heuristic function,denoted by h(n):

 h(n) = extimated cost of the cheapest path from node n to a goal node.

 For example,in Romania,one might estimate the cost of the cheapest path from Arad to Bucharest via a straight-line distance from Arad to Bucharest(Figure 2.1).
Heuristic function are the most common form in which additional knowledge is imparted to the search algorithm.

Greedy Best-first search
Greedy best-first search tries to expand the node that is closest to the goal,on the grounds that this is likely to a solution quickly.
It evaluates the nodes by using the heuristic function f(n) = h(n).

Taking the example of Route-finding problems in Romania , the goal is to reach Bucharest starting from the city Arad. We need to know the straight-line distances to Bucharest from various cities as shown in Figure 2.1. For example, the initial state is In(Arad) ,and the straight line distance heuristic hSLD(In(Arad)) is found to be 366.

 Using the straight-line distance heuristic hSLD ,the goal state can be reached faster.

	
[image: image59.png](6 After expanding Pitestt.

P cemtan g
o> Coehaed o> > o
sy Mot waseee0 550

SEoT18a0 6159554160 607FTH4193

	Figure 2.1 Values of hSLD - straight line distances to Bucharest

	[image: image2.png]36

[image: image3.png]

[image: image4.png]

[image: image5.png]

	Figure 2.2 stages in greedy best-first search for Bucharest using straight-line distance heuristic hSLD. Nodes are labeled with their h-values.

Figure 2.2 shows the progress of greedy best-first search using hSLD to find a path from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu,because it is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras,because it is closest.
Fagaras in turn generates Bucharest,which is the goal.

Properties of greedy search
· Complete?? No–can get stuck in loops, e.g.,

Iasi ! Neamt ! Iasi ! Neamt !

Complete in finite space with repeated-state checking

· Time?? O(bm), but a good heuristic can give dramatic improvement

· Space?? O(bm)—keeps all nodes in memory

· Optimal?? No

Greedy best-first search is not optimal,and it is incomplete.
The worst-case time and space complexity is O(bm),where m is the maximum depth of the search space.

A* Search

A* Search is the most widely used form of best-first search. The evaluation function f(n) is obtained by combining

(1) g(n) = the cost to reach the node,and
(2) h(n) = the cost to get from the node to the goal :

f(n) = g(n) + h(n).
A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. The obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be an overestimate.

A* Search is optimal if h(n) is an admissible heuristic – that is,provided that h(n) never overestimates the cost to reach the goal.

An obvious example of an admissible heuristic is the straight-line distance hSLD that we used in getting to Bucharest. The progress of an A* tree search for Bucharest is shown in Figure 2.2.
The values of ‘g ‘ are computed from the step costs shown in the Romania map(figure 2.1). Also the values of hSLD are given in Figure 2.1.

Recursive Best-first Search(RBFS)

Recursive best-first search is a simple recursive algorithm that attempts to mimic the operation of standard best-first search,but using only linear space. The algorithm is shown in figure 2.4.

Its structure is similar to that of recursive depth-first search,but rather than continuing indefinitely down the current path,it keeps track of the f-value of the best alternative path available from any ancestor of the current node. If the current node exceeds this limit,the recursion unwinds back to the alternative path. As the recursion unwinds,RBFS replaces the f-value of each node along the path with the best f-value of its children.

Figure 2.5 shows how RBFS reaches Bucharest.

	
[image: image6]

[image: image7]

[image: image8]

[image: image9]

[image: image10]

[image: image11]

	Figure 2.3 Stages in A* Search for Bucharest. Nodes are labeled with f = g + h . The h-values are the straight-line distances to Bucharest taken from figure 2.1

	[image: image12.emf]function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure

return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-

cost limit

if GOAL-TEST[problem](STATE[node]) then return node

successors  EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

f [s]  max(g(s) + h(s), f [node])

repeat

best  the lowest f-value node in successors

if f [best] > f_limit then return failure, f [best]

alternative  the second lowest f-value among successors

result, f [best]  RBFS(problem, best, min(f_limit, alternative))

if result  failure then return result

	Figure 2.4 The algorithm for recursive best-first search

	
[image: image13]

[image: image14]

[image: image15]

	Figure 2.5 Stages in an RBFS search for the shortest route to Bucharest. The f-limit value for each recursive call is shown on top of each current node. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti) has a value that is worse than the best alternative path (Fagaras).

(b) The recursion unwinds and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea;then Fagaras is expanded,revealing a best leaf value of 450.

(c) The recursion unwinds and the best leaf value of the forgotten subtree (450) is backed upto Fagaras; then Rimni Vicea is expanded. This time because the best alternative path(through Timisoara) costs atleast 447,the expansion continues to Bucharest

RBFS Evaluation :
· RBFS is a bit more efficient than IDA*

· Still excessive node generation (mind changes)

· Like A*, optimal if h(n) is admissible

· Space complexity is O(bd).

· IDA* retains only one single number (the current f-cost limit)

· Time complexity difficult to characterize

· Depends on accuracy if h(n) and how often best path changes.

· IDA* en RBFS suffer from too little memory.

2.1.2 Heuristic Functions
 A heuristic function or simply a heuristic is a function that ranks alternatives in various search algorithms at each branching step basing on an available information in order to make a decision which branch is to be followed during a search
	
[image: image16]

	Figure 2.6 A typical instance of the 8-puzzle.

 The solution is 26 steps long.

The 8-puzzle

The 8-puzzle is an example of Heuristic search problem. The object of the puzzle is to slide the tiles horizontally or vertically into the empty space until the configuration matches the goal configuration(Figure 2.6)

The average cost for a randomly generated 8-puzzle instance is about 22 steps. The branching factor is about 3.(When the empty tile is in the middle,there are four possible moves;when it is in the corner there are two;and when it is along an edge there are three). This means that an exhaustive search to depth 22 would look at about 322 approximately = 3.1 X 1010 states.
By keeping track of repeated states,we could cut this down by a factor of about 170,000,because there are only 9!/2 = 181,440 distinct states that are reachable. This is a manageable number ,but the corresponding number for the 15-puzzle is roughly 1013.
If we want to find the shortest solutions by using A*,we need a heuristic function that never overestimates the number of steps to the goal.

The two commonly used heuristic functions for the 15-puzzle are :

(1) h1 = the number of misplaced tiles.

For figure 2.6 ,all of the eight tiles are out of position,so the start state would have h1 = 8. h1 is an admissible heuristic.
(2) h2 = the sum of the distances of the tiles from their goal positions. This is called the city block distance or Manhattan distance.
 h2 is admissible ,because all any move can do is move one tile one step closer to the goal.

 Tiles 1 to 8 in start state give a Manhattan distance of

 h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18.

Neither of these overestimates the true solution cost ,which is 26.

The Effective Branching factor
One way to characterize the quality of a heuristic is the effective branching factor b*. If the total number of nodes generated by A* for a particular problem is N,and the solution depth is d,then b* is the branching factor that a uniform tree of depth d would have to have in order to contain N+1 nodes. Thus,
 N + 1 = 1 + b* + (b*)2+…+(b*)d

For example,if A* finds a solution at depth 5 using 52 nodes,then effective branching factor is 1.92.
A well designed heuristic would have a value of b* close to 1,allowing failru large problems to be solved.

To test the heuristic functions h1 and h2,1200 random problems were generated with solution lengths from 2 to 24 and solved them with iterative deepening search and with A* search using both h1 and h2. Figure 2.7 gives the averaghe number of nodes expanded by each strategy and the effective branching factor.

The results suggest that h2 is better than h1,and is far better than using iterative deepening search.

For a solution length of 14,A* with h2 is 30,000 times more efficient than uninformed iterative deepening search.

	
[image: image17]

	Figure 2.7 Comparison of search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A* Algorithms with h1,and h2. Data are average over 100 instances of the 8-puzzle,for various solution lengths.

Inventing admissible heuristic functions
· Relaxed problems

· A problem with fewer restrictions on the actions is called a relaxed problem
· The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

· If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the shortest solution

· If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the shortest solution
2.1.3 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS
· In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
· For example,in the 8-queens problem,what matters is the final configuration of queens,not the order in which they are added.
· In such cases, we can use local search algorithms. They operate using a single current state(rather than multiple paths) and generally move only to neighbors of that state.

· The important applications of these class of problems are (a) integrated-circuit design,(b)Factory-floor layout,(c) job-shop scheduling,(d)automatic programming,(e)telecommunications network optimization,(f)Vehicle routing,and (g) portfolio management.
Key advantages of Local Search Algorithms
(1) They use very little memory – usually a constant amount; and

 (2) they can often find reasonable solutions in large or infinite(continuous) state spaces for which systematic algorithms are unsuitable.

OPTIMIZATION PROBLEMS
Inaddition to finding goals,local search algorithms are useful for solving pure optimization problems,in which the aim is to find the best state according to an objective function.

State Space Landscape
To understand local search,it is better explained using state space landscape as shown in figure 2.8.
A landscape has both “location” (defined by the state) and “elevation”(defined by the value of the heuristic cost function or objective function).

If elevation corresponds to cost,then the aim is to find the lowest valley – a global minimum; if elevation corresponds to an objective function,then the aim is to find the highest peak – a global maximum.
Local search algorithms explore this landscape. A complete local search algorithm always finds a goal if one exists; an optimal algorithm always finds a global minimum/maximum.

	
[image: image18]

	Figure 2.8 A one dimensional state space landscape in which elevation corresponds to the objective function. The aim is to find the global maximum. Hill climbing search modifies the current state to try to improve it ,as shown by the arrow. The various topographic features are defined in the text

Hill-climbing search
The hill-climbing search algorithm as shown in figure 2.9, is simply a loop that continually moves in the direction of increasing value – that is,uphill. It terminates when it reaches a “peak” where no neighbor has a higher value.

	function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

 neighbor, a node.

current (MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor (a highest valued successor of current

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]

current (neighbor

	Figure 2.9 The hill-climbing search algorithm (steepest ascent version),which is the most basic local search technique. At each step the current node is replaced by the best neighbor;the neighbor with the highest VALUE. If the heuristic cost estimate h is used,we could find the neighbor with the lowest h.

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor state without thinking ahead about where to go next. Greedy algorithms often perform quite well.
Problems with hill-climbing
Hill-climbing often gets stuck for the following reasons :

· Local maxima : a local maximum is a peak that is higher than each of its neighboring states,but lower than the global maximum. Hill-climbing algorithms that reach the vicinity of a local maximum will be drawn upwards towards the peak,but will then be stuck with nowhere else to go
· Ridges : A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima that is very difficult for greedy algorithms to navigate.

· Plateaux : A plateau is an area of the state space landscape where the evaluation function is flat. It can be a flat local maximum,from which no uphill exit exists,or a shoulder,from which it is possible to make progress.

	
[image: image19]

	Figure 2.10 Illustration of why ridges cause difficulties for hill-climbing. The grid of states(dark circles) is superimposed on a ridge rising from left to right,creating a sequence of local maxima that are not directly connected to each other. From each local maximum,all th available options point downhill.

Hill-climbing variations
· Stochastic hill-climbing

· Random selection among the uphill moves.

· The selection probability can vary with the steepness of the uphill move.

· First-choice hill-climbing

· cfr. stochastic hill climbing by generating successors randomly until a better one is found.

· Random-restart hill-climbing

· Tries to avoid getting stuck in local maxima.

Simulated annealing search
A hill-climbing algorithm that never makes “downhill” moves towards states with lower value(or higher cost) is guaranteed to be incomplete,because it can stuck on a local maximum.In contrast,a purely random walk –that is,moving to a successor choosen uniformly at random from the set of successors – is complete,but extremely inefficient.

Simulated annealing is an algorithm that combines hill-climbing with a random walk in someway that yields both efficiency and completeness.

[image: image1]Figure 2.11 shows simulated annealing algorithm. It is quite similar to hill climbing. Instead of picking the best move,however,it picks the random move. If the move improves the situation,it is always accepted. Otherwise,the algorithm accepts the move with some probability less than 1. The probability decreases exponentially with the “badness” of the move – the amount E by which the evaluation is worsened.
Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s. It has been applied widely to factory scheduling and other large-scale optimization tasks.
	[image: image20.png]function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mappin

local variables: current, 3 node

from time to “temperature

nert, a node
T, a “temperature” controlling prob. of downward steps

curvent — MAKE-NODE(INITIAL-STATE[problem])
for t— 1to ~ do

T schedule[f]

if T = 0 then return current

neat— a randomly selected successor of curvent

AB— VALUE[nex] - VALUE[current]

if AE > 0 then current— next

else current— nert only with probability ¢ £/7

	Figure 2.11 The simulated annealing search algorithm,a version of stochastic hill climbing where some downhill moves are allowed.

 Genetic algorithms
A Genetic algorithm(or GA) is a variant of stochastic beam search in which successor states are generated by combining two parent states,rather than by modifying a single state.

Like beam search,Gas begin with a set of k randomly generated states,called the population. Each state,or individual,is represented as a string over a finite alphabet – most commonly,a string of 0s and 1s. For example,an 8 8-quuens state must specify the positions of 8 queens,each in acolumn of 8 squares,and so requires 8 x log2 8 = 24 bits.
	[image: image21.png]= stochastic local beam search + generate successors from pairs of states

24748552] 24 31% ,[32752411 K 32748552

32752411 [23 29% [24748552 Y 24752411 || 24752411

24415124 | 20 26% 32752124 || 322124

32543213] 11 14%

24415411 || 2441541[]

Fitness Selection Pairs Cross-Over Mutation

	Figure 2.12 The genetic algorithm. The initial population in (a) is ranked by the fitness function in (b),resulting in pairs for mating in (c). They produce offspring in (d),which are subjected to mutation in (e).

Figure 2.12 shows a population of four 8-digit strings representing 8-queen states. The production of the next generation of states is shown in Figure 2.12(b) to (e).
In (b) each state is rated by the evaluation function or the fitness function.

In (c),a random choice of two pairs is selected for reproduction,in accordance with the probabilities in (b).

Figure 2.13 describes the algorithm that implements all these steps.

	function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual

repeat

new_population (empty set

loop for i from 1 to SIZE(population) do

x (RANDOM_SELECTION(population, FITNESS_FN)

y (RANDOM_SELECTION(population, FITNESS_FN)

child (REPRODUCE(x,y)

if (small random probability) then child (MUTATE(child)

add child to new_population

population (new_population

until some individual is fit enough or enough time has elapsed

return the best individual

	Figure 2.13 A genetic algorithm. The algorithm is same as the one diagrammed in Figure 2.12,with one variation:each mating of two parents produces only one offspring,not two.

2.1.4 LOCAL SEARCH IN CONTINUOUS SPACES
· We have considered algorithms that work only in discrete environments,

 but real-world environment are continuous

· Local search amounts to maximizing a continuous objective function

 in a multi-dimensional vector space.
· This is hard to do in general.
· Can immediately retreat

· Discretize the space near each state

· Apply a discrete local search strategy (e.g., stochastic hill climbing,

 simulated annealing)

· Often resists a closed-form solution

· Fake up an empirical gradient

· Amounts to greedy hill climbing in discretized state space

· Can employ Newton-Raphson Method to find maxima

· Continuous problems have similar problems: plateaus, ridges, local

 maxima, etc.

2.1.5 Online Search Agents and Unknown Environments
Online search problems

· Offline Search (all algorithms so far)

· Compute complete solution, ignoring environment Carry out action sequence

· Online Search

· Interleave computation and action

· Compute—Act—Observe—Compute—·

· Online search good

· For dynamic, semi-dynamic, stochastic domains

· Whenever offline search would yield exponentially many contingencies

· Online search necessary for exploration problem

· States and actions unknown to agent

· Agent uses actions as experiments to determine what to do

Examples

Robot exploring unknown building
Classical hero escaping a labyrinth

· Assume agent knows

· Actions available in state s
Step-cost function c(s,a,s′)
State s is a goal state

· When it has visited a state s previously Admissible heuristic function h(s)

· Note that agent doesn’t know outcome state (s ′) for a given action (a) until it tries the action (and all actions from a state s)

· Competitive ratio compares actual cost with cost agent would follow if it knew the search space

· No agent can avoid dead ends in all state spaces

· Robotics examples: Staircase, ramp, cliff, terrain

· Assume state space is safely explorable—some goal state is always reachable

Online Search Agents

· Interleaving planning and acting hamstrings offline search

· A* expands arbitrary nodes without waiting for outcome of action Online algorithm can expand only the node it physically occupies Best to explore nodes in physically local order

· Suggests using depth-first search

· Next node always a child of the current

· When all actions have been tried, can’t just drop state

Agent must physically backtrack

· Online Depth-First Search

· May have arbitrarily bad competitive ratio (wandering past goal) Okay for exploration; bad for minimizing path cost

· Online Iterative-Deepening Search

· Competitive ratio stays small for state space a uniform tree

Online Local Search

· Hill Climbing Search

· Also has physical locality in node expansions
Is, in fact, already an online search algorithm

· Local maxima problematic: can’t randomly transport agent to new state in effort to escape local maximum

· Random Walk as alternative

· Select action at random from current state

· Will eventually find a goal node in a finite space

· Can be very slow, esp. if “backward” steps as common as “forward”

· Hill Climbing with Memory instead of randomness

· Store “current best estimate” of cost to goal at each visited state Starting estimate is just h(s)

· Augment estimate based on experience in the state space Tends to “flatten out” local minima, allowing progress Employ optimism under uncertainty

· Untried actions assumed to have least-possible cost Encourage exploration of untried paths

Learning in Online Search

· Rampant ignorance a ripe opportunity for learning Agent learns a “map” of the environment

· Outcome of each action in each state

· Local search agents improve evaluation function accuracy

· Update estimate of value at each visited state

· Would like to infer higher-level domain model

· Example: “Up” in maze search increases y -coordinate Requires

· Formal way to represent and manipulate such general rules (so far, have hidden rules within the successor function)

· Algorithms that can construct general rules based on observations of the effect of actions

2.2 CONSTRAINT SATISFACTION PROBLEMS(CSP)

 A Constraint Satisfaction Problem(or CSP) is defined by a set of variables ,X1,X2,….Xn,and a set of constraints C1,C2,…,Cm. Each variable Xi has a nonempty domain D,of possible values. Each constraint Ci involves some subset of variables and specifies the allowable combinations of values for that subset.
A State of the problem is defined by an assignment of values to some or all of the variables,{Xi = vi,Xj = vj,…}. An assignment that does not violate any constraints is called a consistent or legal assignment. A complete assignment is one in which every variable is mentioned,and a solution to a CSP is a complete assignment that satisfies all the constraints.
Some CSPs also require a solution that maximizes an objective function.

Example for Constraint Satisfaction Problem :

Figure 2.15 shows the map of Australia showing each of its states and territories. We are given the task of coloring each region either red,green,or blue in such a way that the neighboring regions have the same color. To formulate this as CSP ,we define the variable to be the regions :WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set {red,green,blue}.The constraints require neighboring regions to have distinct colors;for example,the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

The constraint can also be represented more succinctly as the inequality WA not = NT,provided the constraint satisfaction algorithm has some way to evaluate such expressions.) There are many possible solutions such as

{ WA = red, NT = green,Q = red, NSW = green, V = red ,SA = blue,T = red}.

It is helpful to visualize a CSP as a constraint graph,as shown in Figure 2.15(b). The nodes of the graph corresponds to variables of the problem and the arcs correspond to constraints.

	[image: image22.jpg]Variables W A, NT Q,

Domains D; — {red. green, blue}

Constraints: adjacent regions must have different colors
eg. WA NT (if the language allows this), or

(WA,NT) = {(red, green), (red blue), (green, red), (green, blue), ..

	Figure 2.15 (a) Principle states and territories of Australia. Coloring this map can be viewed as aconstraint satisfaction problem. The goal is to assign colors to each region so that no neighboring regions have the same color.

	[image: image23.png]®

	Figure 2.15 (b) The map coloring problem represented as a constraint graph.

CSP can be viewed as a standard search problem as follows :
· Initial state : the empty assignment {},in which all variables are unassigned.
· Successor function : a value can be assigned to any unassigned variable,provided that it does not conflict with previously assigned variables.

· Goal test : the current assignment is complete.

· Path cost : a constant cost(E.g.,1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are n variables.

Depth first search algorithms are popular for CSPs

Varieties of CSPs
(i) Discrete variables
Finite domains

 The simplest kind of CSP involves variables that are discrete and have finite domains. Map coloring problems are of this kind. The 8-queens problem can also be viewed as finite-domain CSP,where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 and each variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any variable in a CSP is d,then the number of possible complete assignments is O(dn) – that is,exponential in the number of variables. Finite domain CSPs include Boolean CSPs,whose variables can be either true or false.
Infinite domains

Discrete variables can also have infinite domains – for example,the set of integers or the set of strings. With infinite domains,it is no longer possible to describe constraints by enumerating all allowed combination of values. Instead a constraint language of algebric inequalities such as
Startjob1 + 5 <= Startjob3.

(ii) CSPs with continuous domains

CSPs with continuous domains are very common in real world. For example ,in operation research field,the scheduling of experiments on the Hubble Telescope requires very precise timing of observations; the start and finish of each observation and maneuver are continuous-valued variables that must obey a variety of astronomical,precedence and power constraints. The best known category of continuous-domain CSPs is that of linear programming problems,where the constraints must be linear inequalities forming a convex region. Linear programming problems can be solved in time polynomial in the number of variables.
Varieties of constraints :
(i) unary constraints involve a single variable.

 Example : SA # green

(ii) Binary constraints involve paris of variables.

Example : SA # WA

(iii) Higher order constraints involve 3 or more variables.

Example : cryptarithmetic puzzles.

	[image: image24.png]o+
clz=
el (o]

|+

D % %)

Variables: FTUW RO X; X5 X3
Domains: {0,1,2,3,4,5,6,7,8,0}
Constraints
alldiff F,T,U,W,R,0)
O+0=R+10-X, etc

	Figure 2.16 (a) Cryptarithmetic problem. Each letter stands for a distinct digit;the aim is to find a substitution of digits for letters such that the resulting sum is arithmetically correct,with the added restriction that no leading zeros are allowed. (b) The constraint hypergraph for the cryptarithmetic problem,showint the Alldiff constraint as well as the column addition constraints. Each constraint is a square box connected to the variables it contains.

2.2.2 Backtracking Search for CSPs

The term backtracking search is used for depth-first search that chooses values for one variable at a time and backtracks when a variable has no legal values left to assign. The algorithm is shown in figure 2.17.
	[image: image25.png]function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ 1, csp)

function RECURSIVE-BACKTRACKING(assignment, esp) returns soln /failure
if assignment is complete then return assignment
var— SELECT-UNASSIGNED-VARIABLE(VARIABLES[cspl, assignment, csp)
for cach value in ORDER-DOMAIN-VALUES (var, assignment, csp) do
if valuc is consistent with assignment given CONSTRAINTS[csp] then
add {ear = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return resalt
vemove { var = valuc} from assignment
return failure

	Figure 2.17 A simple backtracking algorithm for constraint satisfaction problem. The algorithm is modeled on the recursive depth-first search

	[image: image26.png]ed

	Figure 2.17(b) Part of search tree generated by simple backtracking for the map coloring problem.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that the

variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the

constraints earlier in the search, or even before the search has started, we can drastically

reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking. Whenever a variable X is assigned, the forward checking process looks at each unassigned variable Y that is connected to X by a constraint and deletes from Y ’s domain any value that is inconsistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring search with forward checking.
[image: image27.png]Wi o v v s 7
Intialdomains [R G B]R G B[R G B[R G B[R G B[R G B[RG B
Aterwi-red @ | GE[RCBRG6[Rc 8] GB[RGS
At g=green [© 5 R E[RcB[B[RCE
Aterr=blie (@ 5 R ReE

Figure 56 The progres of o map-coloring search with forward checking, 14—l

is assigned st then forward checking deletes v from the dormains of the nl
varigbles NT and S.1. Afler @ — grven. green is deleted fom the domains of NT. S, and
NSIW. Afler V — hiue, hhue s deleted from the domains of NS and 5., leaving 5. with
o legal values.

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them.
Constraint propagation is the general term for propagating the implications of a constraint on one variable onto other variables.
Arc Consistency

[image: image28.png]Figure: Australian Territories

One method of constraint propagation
is to enforce arc consistency

o Stronger than forward checking,

o Fast
Arc refers to a directed arc in the
constraint graph
Consider two nodes in the constraint
graph (e.z.. SA and NSW)

o An arc is consistent if

o For every value x of SA

o There is some value y of NSW that is

consistent with x

Examine arcs for consistency in both
directions

k-Consistency

[image: image29.png]o Can define stronger forms of consistency

k-Consistency

A CSP is k-consistent if, for any consistent assignment to k — 1 variables
there is a consistent assignment for the k-th variable

o 1-consistency (node consistency)
o Each variable by itself is consistent (has a non-empty domain)
@ 2-consistency (arc consistency)

o 3-consistency (path consistency)
o Any pair of adjacent variables can be extended to a third

Local Search for CSPs
[image: image30.png]Local search algorithms good for many CSPs
Use complete-state formulation

o Value assigned to every variable
o Successor function changes one value at a time

Have already seen this
o Hill climbing for 8-queens problem (AIMA & 4.3)
Choose values using min-conflicts heuristic

s Value that results in the minimum number of conflicts with other
variables

2.2.3 The Structure of Problems

Problem Structure

[image: image31.png]o Consider ways in which the structure of the problem’s constraint
graph can help find solutions
o Real-world problems require decomposition into subproblems

Independent Subproblems
[image: image32.png]Figure: Australian Territories

T s not connected
Coloring T and coloring remaining
nodes are independent subproblems
Any solution for T combined with any
solution for remaining nodes solves the
problem

Independent subproblems correspond to
connected components of the
constraint graph

Sadly, such problems are rare

Tree-Structured CSPs

[image: image33.png]e e o In most cases, CSPs are connected

e o A simple case is when the constraint
graph is a tree
o Can be solved in time linear in the
number of variables
o Order variables so that each parent
precedes its children
o Working "backward.” apply arc
consistency between child and parent

e e e o Working “forward,” assign values
consistent with parent

Fizure: Linear ordering

Figure: Tree-Structured CSP

2.4 ADVERSARIAL SEARCH

 Competetive environments,in which the agent’s goals are in conflict,give rise to adversarial search problems – often known as games.

2.4.1 Games
Mathematical Game Theory,a branch of economics,views any multiagent environment as a game provided that the impact of each agent on the other is “significant”,regardless of whether the agents are cooperative or competitive. In,AI,”games” are deterministic,turn-taking,two-player,zero-sum games of perfect information. This means deterministic,fully observable environments in which there are two agents whose actions must alternate and in which the utility values at the end of the game are always equal and opposite. For example,if one player wins the game of chess(+1),the other player necessarily loses(-1). It is this opposition between the agents’ utility functions that makes the situation adversarial.
Formal Definition of Game
We will consider games with two players,whom we will call MAX and MIN. MAX moves first,and then they take turns moving until the game is over. At the end of the game, points are awarded to the winning player and penalties are given to the loser. A game can be formally defined as a search problem with the following components :

· The initial state,which includes the board position and identifies the player to move.
· A successor function,which returns a list of (move,state) pairs,each indicating a legal move and the resulting state.

· A terminal test,which describes when the game is over. States where the game has ended are called terminal states.

· A utility function (also called an objective function or payoff function),which give a numeric value for the terminal states. In chess,the outcome is a win,loss,or draw,with values +1,-1,or 0. he payoffs in backgammon range from +192 to -192.
Game Tree
The initial state and legal moves for each side define the game tree for the game. Figure 2.18 shows the part of the game tree for tic-tac-toe (noughts and crosses). From the initial state,MAX has nine possible moves. Play alternates between MAX’s placing an X and MIN’s placing a 0 until we reach leaf nodes corresponding to the terminal states such that one player has three in a row or all the squares are filled. He number on each leaf node indicates the utility value of the terminal state from the point of view of MAX;high values are assumed to be good for MAX and bad for MIN. It is the MAX’s job to use the search tree(particularly the utility of terminal states) to determine the best move.

[image: image34]
	Figure 2.18 A partial search tree . The top node is the initial state,and MAX move first,placing an X in an empty square.

2.4.2 Optimal Decisions in Games

In normal search problem,the optimal solution would be a sequence of move leading to a goal state – a terminal state that is a win. In a game,on the other hand,MIN has something to say about it,MAX therefore must find a contingent strategy,which specifies MAX’s move in the initial state,then MAX’s moves in the states resulting from every possible response by MIN,then MAX’s moves in the states resulting from every possible response by MIN those moves,and so on. An optimal strategy leads to outcomes at least as good as any other strategy when one is playing an infallible opponent.
[image: image41.jpg]F

Search Cost

Effective Branching Factor

d IDS Af(hy) Af(ha) IDS Af(hy) A (ha)
2 10 6 6 245 1.79 1.79
4 112 3 12 2.87 148

6 680 20 18 273 1.34

8 6384 39 25 2.80 133

10 47127 93 39 2.79 1.38

12 | 3644035 227 73 278 1.42

14 - 539 113 = 1.44

16 = 1301 211 - 145

18 - 3056 363 - 1.46

20 - 7276 676 - 1.47

232 | - 18094 1219 - 1.48
24 - 39135 1641 = 148

	[image: image42.png](3) Afte expaning Arsd, Sibiu, Rimaicy Vileea

[image: image43.png]b) After umwinding back to Sibiu
sad expanding Fagarac

Figure 2.19 A two-ply game tree. The nodes are “MAX nodes”,in which it is AMX’s turn to move,and the nodes are “MIN nodes”. The terminal nodes show the utility values for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is a1,because it leads to the successor with the highest minimax value,and MIN’s best reply is b1,because it leads to the successor with the lowest minimax value.

[image: image35.png]Minimax Search: Algorithm

Fanction iS4 DECSHON ot retuens r ac i
nputs: stte,curtem s e

e Max-VaLUgste)
et he acion i SUCCESSORS!late with vl o

Funcion MAX-VALUX stfe) return o ity e
i TeRsaL Tt staie) the seare UTLiTv{ iate)
for o, in SUCCESSORS(state)do

e M, MIN-VALUBCE)

Function MX-VALUE(stoe) returs a wity vl
0 TERAL TS tate) then st UTILT Y state)
fo o, 1 in SUCCESSORS(sate) do

ikt A VAL RS

For MAX Node

For MIN Node

	Figure 2.20 An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move,that is,the move that leads to the outcome with the best utility,under the assumption that the opponent plays to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole game tree,all the way to the leaves,to determine the backed-up value of a state.

The minimax Algorithm
The minimax algorithm(Figure 2.20) computes the minimax decision from the current state. It uses a simple recursive computation of the minimax values of each successor state,directly implementing the defining equations. The recursion proceeds all the way down to the leaves of the tree ,and then the minimax values are backed up through the tree as the recursion unwinds. For example in Figure 2.19,the algorithm first recourses down to the three bottom left nodes,and uses the utitliy function on them to discover that their values are 3,12,and 8 respectively. Then it takes the minimum of these values,3,and returns it as the backed-up value of node B. A similar process gives the backed up values of 2 for C and 2 for D. Finally,we take the maximum of 3,2,and 2 to get the backed-up value of 3 at the root node.
The minimax algorithm performs a complete depth-first exploration of the game tree. If the maximum depth of the tree is m,and there are b legal moves at each point,then the time complexity of the minimax algorithm is O(bm). The space complexity is O(bm) for an algorithm that generates successors at once.
2.4.3 Alpha-Beta Pruning
The problem with minimax search is that the number of game states it has to examine is exponential in the number of moves. Unfortunately,we can’t eliminate the exponent,but we can effectively cut it in half. By performing pruning,we can eliminate large part of the tree from consideration. We can apply the technique known as alpha beta pruning ,when applied to a minimax tree ,it returns the same move as minimax would,but prunes away branches that cannot possibly influence the final decision.
Alpha Beta pruning gets its name from the following two parameters that describe bounds on the backed-up values that appear anywhere along the path:
· α : the value of the best(i.e.,highest-value) choice we have found so far at any choice point along the path of MAX.
· β: the value of best (i.e., lowest-value) choice we have found so far at any choice point along the path of MIN.
Alpha Beta search updates the values of α and β as it goes along and prunes the remaining branches at anode(i.e.,terminates the recursive call) as soon as the value of the current node is known to be worse than the current α and β value for MAX and MIN,respectively. The complete algorithm is given in Figure 2.21.
 The effectiveness of alpha-beta pruning is highly dependent on the order in which the successors are examined. It might be worthwhile to try to examine first the successors that are likely to be the best. In such case,it turns out that alpha-beta needs to examine only O(bd/2) nodes to pick the best move,instead of O(bd) for minimax. This means that the effective branching factor becomes sqrt(b) instead of b – for chess,6 instead of 35. Put anotherway alpha-beta cab look ahead roughly twice as far as minimax in the same amount of time.

[image: image36]

[image: image37]
	Figure 2.21 The alpha beta search algorithm. These routines are the same as the minimax routines in figure 2.20,except for the two lines in each of MIN-VALUE and MAX-VALUE that maintain α and β

2.4.4 Imperfect ,Real-time Decisions

 The minimax algorithm generates the entire game search space,whereas the alpha-beta algorithm allows us to prune large parts of it. However,alpha-beta still has to search all the way to terminal states for atleast a portion of search space. Shannon’s 1950 paper,Programming a computer for playing chess,proposed that programs should cut off the search earlier and apply a heuristic evaluation function to states in the search,effectively turning nonterminal nodes into terminal leaves. The basic idea is to alter minimax or alpha-beta in two ways :
(1) The utility function is replaced by a heuristic evaluation function EVAL,which gives an estimate of the position’s utility,and

(2) the terminal test is replaced by a cutoff test that decides when to apply EVAL.

2.4.5 Games that include Element of Chance
Evaluation functions
An evaluation function returns an estimate of the expected utility of the game from a given position,just as the heuristic function return an estimate of the distance to the goal.

Games of imperfect information

· Minimax and alpha-beta pruning require too much leaf-node evaluations.

May be impractical within a reasonable amount of time.

· SHANNON (1950):

· Cut off search earlier (replace TERMINAL-TEST by CUTOFF-TEST)

· Apply heuristic evaluation function EVAL (replacing utility function of alpha-beta)

Cutting off search

· Change:

· if TERMINAL-TEST(state) then return UTILITY(state)

into

· if CUTOFF-TEST(state,depth) then return EVAL(state)

· Introduces a fixed-depth limit depth

· Is selected so that the amount of time will not exceed what the rules of the game allow.

· When cuttoff occurs, the evaluation is performed.

Heuristic EVAL
· Idea: produce an estimate of the expected utility of the game from a given position.

· Performance depends on quality of EVAL.

· Requirements:

· EVAL should order terminal-nodes in the same way as UTILITY.

· Computation may not take too long.

· For non-terminal states the EVAL should be strongly correlated with the actual chance of winning.

· Only useful for quiescent (no wild swings in value in near future) states

Weighted Linear Function
 The introductory chess books give an approximate material value for each piece : each pawn is worth 1,a knight or bishop is worth 3,a rook 3,and the queen 9. These feature values are then added up toobtain the evaluation of the position. Mathematically,these kind of evaluation fuction is called weighted linear function,and it can be expressed as :
 Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

· e.g., w1 = 9 with

 f1(s) = (number of white queens) – (number of black queens), etc.
[image: image38.png](@) White to move (b) White to move

(a) Black has an advantage of a knight and two pawns and will win the game.
(b) Black will lose after white captures the queen.

Games that include chance
 In real life,there are many unpredictable external events that put us into unforeseen situations. Many games mirror this unpredictability by including a random element,such as throwing a dice.

Backgammon is a typical game that combines luck and skill. Dice are rolled at the beginning of player’s turn to determine the legal moves. The backgammon position of Figure 2.23,for example,white has rolled a 6-5,and has four possible moves.
[image: image39.png]

	Figure 2.23 A typical backgammon position. The goal of the game is to move all one’s pieces off the board. White moves clockwise toward 25,and black moves counterclockwise toward 0. A piece can move to any position unless there are multiple opponent pieces there; if there is one opponent ,it is captured and must start over. In the position shown,white has rolled 6-5 and must choose among four legal moves (5-10,5-11),(5-11,19-24),(5-10,10-16),and (5-11,11-16)

· White moves clockwise toward 25

· Black moves counterclockwise

 toward 0

· A piece can move to any position

unless there are multiple opponent

pieces there; if there is one

opponent, it is captured and

must start over.

· White has rolled 6-5 and must

choose among four legal moves:

(5-10, 5-11), (5-11, 19-24)

(5-10, 10-16), and (5-11, 11-16)

--

[image: image40]
	Figure 2-24 Schematic game tree for a backgammon position.

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=

UTILITY(n)

 If n is a terminal

maxs (successors(n) MINIMAX-VALUE(s)
 If n is a max node

mins (successors(n) MINIMAX-VALUE(s)
 If n is a max node

(s (successors(n) P(s) . EXPECTEDMINIMAX(s) If n is a chance node

These equations can be backed-up recursively all the way to the root of the game tree.

--

[image: image44.png]) Aftr switching back to Rimaieu Viles
and expanding Piteti 300

[image: image45.png]Start State

Goal State

[image: image46.png]objectivg function global maxizmm

—

e

“fat’ local maximim

e e e

[image: image47.jpg]

[image: image48.png]MIN ©) X

MIN () x| x|

x[o[x| [X[o]X] [X[o[X]
TERMINAL [[0]X| [0[O[X,
o X[X[o] [X[0[o
Utility = o “

[image: image49.png]|Microsoft PowerPoint - [m6-game] e B

101/ X

File

State || Page || Seascape | 1.000 | y79z¢@12 || game.pof || Tuepectsioszoezos |

Vriabe Size

9270

pen

ot et The o—3 algorithm

Print Markee!

il

i

Save Ml function ALPHA-BETA-SEARCH(state) returns an action

Expliien inputs: state, current state in game

v+ MAX-VALUE(state, —00, +00)
14 return the action in SUCCESSORS(state) with value v

N

B
B

Reclsphy function MAX-VALUE(state, , 8) returns a utility value

inputs: state, current state in game
, the value of the best alternative for MAX along the path to state
B, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTiLiTy(state)
v —00
for a,s in SUCCESSORS(state) do
v MAX(v, MIN-VALUE(s, o 8))
if v > § then return v
a+ Max(a, v)
return v

I) (05245 s {sdapta from Rl . Norig) Chapter 6, Sction 14 15

7
I Inbot - Mictosoft Dutlook | 7] méigame. |[%5E ov- gamepat «@9 24P

2 start| (] suna - [defaul] - F-3ecu..| (3] suna - [sunal - F-Secue S

[image: image50.png]8 5v: game.pat

The o—3 algorithm

function MIN-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
@, the value of the best alternative for MAX along the path to state
B, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTiLiTy(state)

V4 +00

for a,s in SUCCESSORS(state) do
v4 MIN(v, MAX-VALUE(s, o 8))
if v < a then return v
B+ MIN(B,v)

return v

QDD

(05245 s {sdapia from Rl e Norig)

[image: image51.png]Max

MIN

[image: image52.png]MAX

3]
Z
bl

CHANCE

MAX

TERMINAL

[image: image53.png]Arad [

18] Vaslui

Timisoara

Pitesti

[Hirsova

[] Mehadia
75|

Dobreta [
Eforie

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea 103
ibiu

Timisoara 320
Urziceni 80
Vaslui 199

Zerind 374

[image: image54.png]) Thadstial state

Preerverrd

[image: image55.png]After expanding Arad

[image: image56.png]) AT SRpEa g

[image: image57.png](@) After expanding Rismnicy Vileea

ois2mraos 523176 6TBTaE

SBoTeBrIE0 H17TTH00 553300+253

[image: image58.png](0) After expanding Fagarss

